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A linear theory is developed for the spin-up of a compressible fluid, stratified by a 
spherical gravity field. Numerical results are obtained for the case of strong 
stratification (Brunt-Vaisala frequency N much greater than the rotation 
frequency Qo). The interior flow is solved in terms of a set of angular eigenfunc- 
tions which have been obtained numerically. The principal result is that the 
spin-up is limited to a layer adjacent to the spherical boundary, the thickness 6 of 
the layer being of the order of L(Qo/N) ,  where L is the radius of the boundary. 
The solution is qualitatively similar to that found by Holton (1965), Walin 
(1969), and Sakurai (1969a, 6 )  for a stratified fluid in a cylinder. The thickness of 
the spin-up layer diminishes with latitude 4, the variation being described 
roughly by the formula 6 N LQ,I sin $1 ,". For the case of slow continuous spin- 
up, the Ekman suction velocity has been calculated, and the results show that 
141 = 24" is the dividing angle between suction (141 > 24") and blowing 
(141 < 24"). 

1. Introduction 
An important problem in the theory of rotating fluids is the so-called spin-up 

problem, in which one analyzes the motions induced in an enclosed, uniformly 
rotating fluid by a sudden increase in angular velocity of the container. The first 
complete analysis of such a problem was given by Greenspan & Howard (1963) 
for the case of an incompressible, unstratified fluid. For a stratified fluid, there 
are two general types of spin-up problems: (i) laboratory flows, in which the 
gravity field is constant, and (ii) geophysical flows in which the gravity equi- 
potentials are closed surfaces (typically spherical or nearly so). A prototype of 
laboratory flows is the case of the circular cylinder which has been studied by 
Holton (1965), Sakurai (1969a, b) and Walin (1969). In the present work, we 
analyze the simplest of the geophysical flows, namely the spin-up of a stratified 
fluid in a sphere. 

The analysis given here rests on four major assumptions. The first is lineariza- 
tion about a state of uniform rotation. (As is well known, there are necessarily 
small, thermally driven circulations in a rotating, stratified gas. We assume that 
the rotation is slow enough for these circulations to be negligible, and we do not 
consider them further in the present work.) The second is the assumption of 
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geostrophic flow, or, alternatively, the assumption that inertial modes are not 
excited. This means that the time-scale for variations of the boundary angular 
velocity should be either much shorter than or much longer than the basic 
rotation period. In  particular, this includes the important case of impulsive 
spin-up. Our third assumption is that the stratification is strong. Specifically, we 
take (Q , /N)  < 1, where Q,, is the basic rotation frequency and N is the Brunt- 
Vaisala frequency. Further, we assume that ( Q , / N )  is much less than the ratio of 
the scale height to a typical dimension of the container. As we shall see later, 
these assumptions allow a great simplification of the mathematical problem. The 
fourth assumption is that the container boundary is an equipotential surface for 
the total (gravity plus centrifugal) force field. This assumption, which seems 
reasonable for problems of geophysical interest, has the consequence that the 
thermal and viscous boundary layers are uncoupled. It appears possible to 
analyze the spin-up problem without this assumption, but some features of 
interest would be obscured by technical complexities. This point is discussed 
further in $2.3.  

The formulation of the problem, on the basis of the above assumptions, is 
carried out in § 2. In $2 .2  we derive the basic second-order elliptic equation which 
governs the interior flow. The boundary condition on the interior flow is obtained 
from the boundary-layer analysis of 5 2.3. The general analysis of Q 2 (valid for an 
arbitrary axisymmetric container) is specialized to the case of the sphere in Q 3. 
We show in $ 3.1 that the approximations based on strong stratification allow a 
separation-of-variables solution of the governing equation. The angular eigen- 
functions arising in the separation are not standard special functions. They have 
been obtained numerically, however, and appendix A of this paper describes 
their computation and use. (In addition, appendix A contains an analytical 
asymptotic analysis which provides a check on the numerical theory.) An evalua- 
tion and discussion of the solution is given in $3.2. 

The present work is part of a program of calculations which are intended to 
elucidate the solar spin-down problem. This program, along with our point-of- 
view on the solar problem is described elsewhere (Clark, Thomas & Clark 1969). 
A brief discussion of the implications of the present work for the solar problem is 
given in $ 4  below. 

2. Formulation 
In addihion to the assumptions listed in $ 1 ,  there are a number of minor 

approximations which have been made to reduce the mathematical complexity 
of the problem. In order to make clearer the detailed discussion of the equations 
below, we give a summary here of the general features of the flow field. The 
justification for the claims made in this summary rests mostly on what is already 
known about rotating fluids (Greenspan 1968). 

Let Y be a characteristic kinematic viscosity of the fluid, L a characteristic 
dimension of the container, and !2, the angular velocity of the uniform rotation. 
Then the basic small parameter in the problem is the Ekman number, 

E = V / ( L Z Q , ) .  (1) 
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The characteristic time for changes in the interior geostrophic flow is Q;lE-t. 
On this time scale, the direct influence of viscous diffusion is confined to a layer 
adjacent to the boundary with thickness of the order LEQ (Ekman layer), and 
the thermal effects are confined to a layer with thickness of the order of LE*. 
(We assume throughout this work that the Prandtl number of the fluid is of order 
one with respect to the Ekman number.) A second important parameter is the 
ratio Q0/N,  where N is a characteristic value of the Brunt-VaisSila frequency. 
We assume that Qo/N is small, but that it is of the order of one with respect to Ei. 
The results of our calculations show that the fluid appreciably affected by changes 
in the boundary angular velocity resides in a layer adjacent to the boundary with 
a thickness. 

This layer is much thicker than the viscous and thermal layers, but still thin 
compared to the container dimension. 

6 N (Qo /N)L .  (2) 

2.1. Basic equations 

Because of the large number of variables, we adopt the following systematic 
notation: (i) a subscript zero refers to the basic undisturbed state of uniform 
rotation; (ii) a superior caret means a dimensional variable; (iii) quantities 
without carets are dimensionless. 

The undisturbed state is specified by the angular velocity a,, the pressure j30, 
the density j j o ,  and the gravitational poteptial &o, where &o is taken to be the 
sum of the centrifugal potential - &\ao x RI2 and the true gravitational poten- 
tial. The basic equation of hydrostatic balance is 

A h  

$@o = - jjOV@O. (3) 

As is well known, it follows from (3) that the level surfaces of j30, Po and &o 
coincide. It then follows that the remaining thermodynamic variables, such as the 
temperature !/?o and entropy per unit mass 5,, are also constant on the equi- 
potentials. (In making this claim, we assume that the functional form of the 
equation of state does not depend on position. The primary case of physical 
interest excluded by this assumption is the case of variable mean molecular 
weight .) 

Consider now a disturbance described by the velocity $, the pressure Po + @, 
the density pO+j j ,  and the entropy g o + & .  The linearized equations of mass, 
momentum, and energy (referred to the rotating frame) are 

and 

ap  ̂ +$.(p^,6) = 0, at 

h A 

Here f is the viscous force per unit mass, and Q is the perturbation to the heat 
flux vector. We have neglected the perturbation to the gravity associated with the 
density perturbation. The justification is based on the fact that the radial extent 
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8 of the perturbation is much smaller than the extent 2 of the body-812 N 

bola < 1. It can then be shown that the contribution of the perturbed gravity 
field to the total force is smaller than p^$&o by the ratio 8,/8. To close the set of 
equations (4)-(6), we need a thermodynamic relation connecting j3, j3, and 8. The 
general equation, correct to first order, is 

9 = ~ ~ ( P + P o P o ~ o ~ l ~ p o ~ ~  (7 )  

where = (a9o/aPo)s  (8) 

is the square of the sound speed, epo is the specific heat at constant pressure, and 

P o  = - P i ' ~ a P o P ~ o ~ ,  (9) 

is the coefficient of thermal expansion. 
Equations (4)-(6) apply to a wide class of motions, and they can be simplified 

considerably in the present special problem. Consider first the transport terms 
and $. 6,  which are, ingeneral, very complicated for a compressible fluid with 

variable transport properties. During the time scale of interest, the diffusive 
effects are confined to thin boundary layers near the wall. The variation of the 
transport coefficients across these layers will be slight, and we may approximate 
the terms by 2 = 3$26 (10) 

and - $. 6 = poepof$2!P, (11)  

where the viscosity 3 and thermal diffusivity f are now taken to be constant. 
The difference between these approximations and the actual expressions is small 
in the boundary layers and unimportant elsewhere. 

Further simplifications are possible. The fact that we are dealing with small- 
amplitude, slow motions suggests that the perturbations may be very nearly 
incompressible. This turns out to be SO, but the justifying order-of-magnitude 
estimates are rather lengthy, so they are presented in appendix B. The result is 
that the continuity equation (4) may be replaced by the much simpler equation 
$ . G = 0. This in turn may be exploited by the introduction of a stream function 
$, so that the axisymmetric velocity field may be written as 

G = 6 x (e+ $/PI + Ge,, (12) 

where e$ is a unit vector in the azimuthal direction, P is the cylindrical radial 
co-ordinate, and 8 is the azimuthal velocity. Since the flow is axisymmetric, 
both 8 and $ are independent of the azimuthal angle q5. With these simpli- 
fications, the basic equations take the following form : 

and 
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It will be convenient later to express $i+o in terms of the Brunt-Vaisala frequency 
fi, where 

(The physical interpretation of 8 is the oscillation frequency of a small element 
of fluid displaced adiabatically from equilibrium.) Since go is a function of 6o 
alone, one can show from (16) that 

3 2  = ( ~ 0 5 ! o / ~ p o ) $ & o .  $30. (16) 

ep0 8 2  

$Go. (17) $,$ - ~- 
O - poPol$6012 

The first step in the analysis of these equations is the proper scaling of quanti- 
ties. The scaling must be correct with respect to the Ekman number, since it is the 
basic small parameter in the expansion scheme. The scaling with respect to the 
other parameters is largely a matter of convenience, since they are all of order 
one with respect to the Ekmnn number. Lengths are scaled by 2, the charac- 
teristic container dimension, and for the time scale, we make use of the known 
result that spin-up occurs in a time of the order of fiilE--*. The dimensionless 
independent variables and gradient operat'or are then 

t = EXlof ,  R = E-lk, V = 26. 
For the azimuthal velocity 0, we choose the scale 28,. Then we use the known 
result that the interior circulations are O(E4) with respect to 13 to get the scaling 
for $. The dimensionless azimuthal velocity and stream function are 

A 

w = (ZAo)-1 0, @ = (E&23fi0)-1$. 

The proper scaling for the pressure is established by considering the force 
balance along an equipotential. On this basis, we define the dimensionless 
pressure, 

where 8, is a constant characteristic value of Po. For the other thermodynamic 
quantities, we use the following scaling: 

"-1" A-1" p = p* p, T = !P;'!P, s = cp0s.  

Finally, the gravitational potential must be scaled properly. We let o* be a 
(constant) characteristic value of 1 $$,I. Then the dimensionless potential is 

Qo = (E@*)-l 60. 
The dimensionless gravity is g = @lo*, where g = lV@ol and 0 = I$$,]. With the 
above scalings, the basic equations (13)-(15) can be put into the form, 

(18) 
E V [ $ - E 4 ( r V 2 ( ~ ) - Q ) j x ~  = 2we,---GCVQ,,, VP P 

Po Po r 

aw - = !ee,.V$+E*(V2w-:), 
at Y 

(20) 
as 1 

and - f-  (VH, x V$) . e$ = 8-1EtV2T, 
at r 

where er and e, are unit vectors in the r- and z-directions, and wherep, = po/p^*, 
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9 = $12 is the Prandtl number, and G = 3,/(2&) is the inverse of the Froude 
number. The quantity Ho is a dimensionless function of the basic stratification, 
defined by 

dHo 822 
.- - A formula needed later is - 

Do $0g2!?* ’ 

which is obtained from (17) and (21). In  (20) we have replaced ?tl V 2 ( p o T )  by 
V2T, an approximation which is justified by the thinness of the diffusive boundary 
layers. The dimensionless form of the thermodynamic relation (7) is 

P = ~ c ^ o / ~ ~ o ~ ~ ~ ~ f ~ o ~ o ~ o ~ ~ .  (23) 

2.2. Interior equations 

By setting E = 0 in (18)-(20), we obtain the equations for the interior flow, 

2powe, = V p  + GpVQo, (24) 

(awlat) = (2/r)e,. V$-, (25) 

and ( a s p )  + r-le$. (VH, x V$-) = 0. (26) 

It is advantageous to combine these into a single equation for $-. The first step is 
to use (23) to eliminate p from (24). After a little calculation, the resulting equa- 
tion may be put into the form 

poF(2wVr+ G,80~osVCDo) = V ( F p ) ,  (27) 

where we have replaced e, by Vr ,  and where F is a function of the basic stratifica- 
tion given by 

The pressure p may be eliminated by taking the curl of (27) to get 

V r x V ( 2 p o F w ) + G ~ o i f o p , F V @ o x ~ s  = 0, (28) 

where we have used the fact that Po Po po F is a function of (Do alone. Equation (28) 
is a time-independent constraint which, roughly speaking, relates the variation 
of w along cylindrical surfaces r = constant to the variation of s along equipoten- 
tial surfaces Q0 = constant. The variationsin w (equation (25)) are determined by 
the cylindrical radial velocity, whereas the variations in s (equation (26)) are 
determined by the velocity normal to equipotential surfaces. Thus, the ratio of 
the changes in w and s will depend on the flow direction, and this degree of 
freedom means that in general the constraint (28) can be satisfied. (The flow near 
any internal surface where Q0 . V@, = 0 is an important exception. In that case, 
the relevant direetions-perpendicular to Ro, parallel to V@,-coincide. As we 
shall see later, this has the consequence that the spin-up in the equatorial plane is 
much smaller than elsewhere.) 
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Before completing the reduction to a single equation, we introduce some 
simplifying notation: for any scalars A,  B ,  let 

e,.VA x V B  = ( A ,  B). 

Then (25 ) ,  (26), and (28) may be written as 

and 

A single equation for $ is obtained by taking the time-derivative of (31) and then 
using (29) and (30) to get 

( r ,  2p0 F w )  + GBo popo F(Qo, s) = 0. (31) 

We may simplify this somewhat by using ( 2 2 )  for dHo/dQo and the identities 

( A ,  B C )  = ( A ,  B)C + B(A, C), 

(A ,  P ( B ) )  = ( A ,  B)F’(B) ,  

and ( A ,  F ( A ) )  = 0. 

This second-order elliptic equation governs the stream function for the interior 
flow. In  order to solve the equation, it is necessary to specify the gravitational 
potential Qo, the ‘structure functions’ 8 and F ,  and a boundary condition on $. 
The boundary condition can be obtained through an analysis of the diffusive 
boundary layers, which we consider next. 

2.3. Boundary -layer analysis 

In general the interior solution will not satisfy the thermal and viscous boundary 
conditions at  the container wall, and there will be thin diffusive boundary layers. 
The nature of the boundary layers depends strongly on the angle between the 
gravity vector and the wall normal. Hsueh (1969) has shown that whenever this 
angle greatly exceeds E*, the viscous and thermal layers are coupled into a single 
layer of thickness E*. If, however, gravity is parallel to the normal (i.e. angle 
< Et ) ,  then one gets the usual E )  thermal layer and E* Ekman layer. We have 
assumed in the present work that the gravity vector and the wall normal are 
parallel. As we shall see below, this allows a separation of the thermal and viscous 
boundary layers, with the result that the interior flow is independent of the 
thermal boundary condition. 

In the investigation of the boundary layer, we use the following co-ordinate 
system: e, is a unit vector normal to the wall (pointing into the fluid), and a is 
distance measured along e,; ea is a unit vector tangent to the wall, and /3 is 
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distance along the wall from some reference point. Because of the double layer 
structure ( E )  and E i )  we need two scaled normal co-ordinates, 

7 = a/E*, 6 = a/Ea. 

Consider now the expansion procedure, Any physical quantity A will have a 
representation of the form 

A = A(r)(a,p, E )  +A(”(& p, E )  + A@)(q, p, E ) ,  

where A(r) is the interior solution, A@) is the thermal layer correction, and 
A(.) is the Ekman layer correction. The corrections are assumed to be transcen- 
dentally small outside of their respective boundary layers. Each of the three 
functions in the representation has an expansion in powers of Ea (at least for the 
first few terms); thus, 

A(’) = R6’)(a, p) + EiA;I)(a, p) + E*Air)(a, p) + . . ., 
A(2’) = aT’)(6, p) + E f A p ( 6 ,  p)  + E*ALT)([,p) + . . ., 

and AtE) = AhE)(q, p) + E.hAIE)(~, p) + E*ALE)(r, p) + . . .. 
The procedure is to substitute expansions of this form into the basic equations 
(18)-(20), and then equate the coefficients of like powers of Ea. We consider only 
the equations for the zero-order quantities Ah1), AhE), and, for simplicity, we 
omit the subscript zero in what follows. One gets three sets of equations, corre- 
sponding to the regions a = O(l),  E = O( 1)) and 7 = O( 1). The interior equations 
(a = O( 1)) are simply (24) - (26) )  as one would expect. The thermal layer equations 
(6 = O(1)) are e,.e,(a+(T)/a() = 0 (thus, $(23 = O),  

(ap(n/a() = 0 (thus, p(T) = 0), 

2w(T)eB.Vr = 0 (thus, ~(‘1’) = 0)) 

and (as(n /a t )  = Y-l(a2T(T)/a‘p). (33) 

The Ekman layer equations (7 = O( 1)) are 

and 

The thermal layer equations show that $, p ,  and w do not change across the 
Ei layer. Since p(m = 0, the temperature and entropy corrections are related by 

so that dT) = T(a. Thus, (33) becomes a diffusion equation for T(T). The solution 
to this equation may be used to satisfy whatever thermal boundary condition is 
imposed at the wall. Since this thermal boundary layer has no effect on the 
motion to this order, we do not consider it further. 
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The Ekman layer equations show that the thermodynamic quantities do not 
vary across the ELlayer. The two equations for @m and w(m may be written as 

2 COS s(a$(Q/ap) = r ( a w E ) / a p Z )  (36) 

and (a3@(m/ap3) = - 2r cos ~w(-Q,  (37) 

where 8 is the angle from the vertical e, to the exterior wall normal -ea.  The 
boundary conditions are that @ and its normal derivative should vanish at the 
wall, and the azimuthal velocity should match the prescribed boundary velocity 
rQ&). Thus, we have (correct to the lowest order in the Ei  expansion) 

and 

The solution of (36) and (37), which satisfies the boundary conditions (38) and 
(39), is the familiar Ekman spiral: 

@(a = - @(I)e-do{cos (dy )  + sin ( d p ) }  

w(m(y = 0, p) + w(o(a = 0, p)  = rQB. (40) 

and = (2vd/r)@(I)e-d~ cos (dv), 

where d = lcos814 and CT = sign of cos8. The boundary condition (40) then 
yields the fundamental relation between the interior quantities: 

(41) 

The solution for the interior flow may be obtained from the equations of $2.2 
and the boundary condition (41). 

Perhaps it should be noted that the Ekman layer analysis given above breaks 
down very near the equator. Although the proper scaling for the equatorial 
Ekman layer has been given by Carrier (1  965) and Stewartson (1 966), the solution 
of the difficult mathematical problem is not yet available. In any case, the 
breakdown does not seem to have any serious consequences for the present 
problem. 

2da@(I) + rw(I) = r2Q2,. 

3. Spherical container 
3.1. Calculation of the interior flow 

We now specialize to the case of a spherical container with a spherically sym- 
metric stratification and gravity field. (We assume that the flattening due to the 
basic rotation is small enough to be ignore?.) The solution of the equations is 
based on the smallness of the parameter (2Q0/8),  and only the first approxima- 
tion is calculated here. A brief discussion of a rational expansion scheme in this 
parameter is given in Q 3.2. 

The quantities of interest are the stream function $ and azimuthal velocity w. 
The relevant equations are (29) and (32), with the boundary condition (41). The 
first step in the solution is the introduction of spherical co-ordinates R (radius) 
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( A , B )  = e,.VA x VB = 

and (29) and (32) may be written as 

and (43) 

where L = cos 8(a/aR) - (sin O/R) (ape) 
In (43) po, F ,  and 8 are all functions of R only. The quantity (8/28,) is large, and 
it follows from an order-of-magnitude analysis of (432 that the length scale for 
variations normal to the boundary is of the order of (2Q0/$). It is one of our basic 
assumptions that this quantity is smaller than the scale height. Thus, the R- 
dependent coefficients in (43) do not vary much over the radial extent of the 
flow, and we can replace them with their values at  the boundary R = 1. For the 
same reasons, (a/aR) 9 (l/R), and we can replace the operator L by cosO(a/aR). 
It is convenient to introduce the large parameter, 

B = ( m 2 a o ) l R = l ,  

and the new normal co-ordinate, 

g =  B(1-R). 

(awlat) = - 2~ cot e(a*-ja<) 
Then, the approximate equations for w and $ may be written as 

(44) 

and (45) 

Wenow solve (44) and (45) subject to the boundary condition (41). The solution 
is readily obtained by separation of variables, and is conveniently written in 
terms of x = cos 8: 03 

w = x C cn(t) exp ( - A, 6) wn(x), 
n=l  

and 

Here w, and A, are the eigenfunctions and eigenvalues of the Sturm-Liouville 
system, 

with w,(O) = 0 (@ is an odd function of x) and w, well-behaved at  the pole x = 1 .  
The numerical solution of this eigenvalue problem is described in appendix A, 
along with some of the basic properties of the eigenfunctions. The amplitude of 
w, has been fixed by the normalization 

1; ~~[[w,(z)]~dx = 1, 
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and the sign has been fixed by the requirement that w,( 1 - x)-3 be positive for 
x = 1. (w, vanishes like (1 -x)t  at J: = 1.) For some purposes, i t  is more con- 
venient to work with the related functions, 

Qn(x) = x( 1 - x2)-4 w,(x), 

which satisfy the orthogonality relation, 

so’ Q,(z)Qt,(x) (1-x2)dx = (47) 

In  terms of these functions, the angular velocity and stream function are 

03 

(w/r) N w( 1 - x2)-* = c,(t) exp ( -A ,  6) Q,(x), (48) 
n= 1 

and (49) 

The coefficients c,(t) are determined by the boundary condition (41), by substitut- 
ing the expansions (48) and (49). The result is 

1 1 dc, m 

~ c - - Qn(x)+ c c,Qn(x) = Q,. 
Blxjfr,=, A, dt n= 1 

Because of the 1xl-t factor, the modes are coupled. In principal one can obtain an 
infinite set of coupled equations for the coeacients c, (first-order differential 
equations in time). These equations are then to be solved subject to given initial 
values c,(O), which are known whenever w is specified at t = 0. Fortunately this 
rather complicated calculation can be avoided in two cases of particular interest. 
Consider first impulsive spin-up. Then QB is constant, and, although the tran- 
sients are difficult to analyze, the final steady state is easily calculated. As t --f 00, 

(dc,/dt) --f 0 and c, -+ ckm), and we obtain from (47) and (50) 

These coefficients are easily calculated (appendix A) and the in0erior angular 
velocity is then calculated from the series (48). We can also obtain some infor- 
mation about the time required to reach steady state. The terms on the left of 
(50) are comparable in order-of-magnitude for (dc,/dt) N A,Bc,, and this defines 
a time scale t ,  N c,/(dc,/dt) N (A, B)-l N B-l. The dimensional time is 

( 5 2 )  
A 

t“ N Q;lE-BB-1 N e!~yi?/(%fi*)]-k, 
A A A  

where 8 N (Q, /N)L is the thickness of the spin-up layer. Thus, the spin-up time is 
given by the same formula as in the unstratified case, provided that the charac- 
teristic length is taken to be the spin-up layer thickness 8 (Walin 1969). 

A second case which can be handled easily is that of slow continuous spin-up. 
If QB changes on a time-scale much longer than that given by ( 5 2 ) ,  then there is a 
quasi-steady state in which the Ekman process is able to keep up with the changes 
in the boundary velocity. Again we can neglect the time-derivatives in (50), and 
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the coefficients c, are given by (51), where QB is now a slowly varying function of 
time. The small meridional circulations required can then be calculated from (49). 
One quantity of interest is the Ekman suction velocity, which is obtained from 
(12) and (49): 

where 
r i  

(54) 

The actual numerical evaluation of the solution from these formulas is discussed 
in appendix A. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1 *6 
Y s 

FIGURE 1.  Interior angular velocity R as a function of depth 
b for colutitudes 0 = O0, 30", 60". 

3.2. Discussion of solution 

The principal quantity of interest is the interior angular velocity, which may be 
written as m 

LR = (win,) (1  --x2)-4 = C A,exp (-A,<) LR,(x). (55 )  
n = l  

We have tabulated Q as a function of <for the six angles 8 = 0" (15") 75". Figure 1 
shows a plot of LR versus 5 for 8 = O", 30" and 60". It is clear that the spin-up 
layer becomes thinner as the equator is approached. The characteristic thickness 
of the layer is 

where y is a dimensionless number of order one. If $is defined to be the distance at  
which i2 falls to 10 % of its value on the boundary, then our numerical results 
show that y = 1.8 for 0 6 0 < 60". Near the equator, y becomes smaller; y = 1.4, 
for example, for 0 = 75". The formula (56) is qualitatively like the results obtained 
by Holton (1965), Walin (1969), and Sakurai (1969a, b) for a circular cylinder, 

8 = &8,1 cosel/i9), (56) 
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the major difference being the occurrence of the normal component of angular 
velocity (holcos8l) in the formula here. 

For the case of continuous spin-up, the Ekman suction velocity is also of 
interest. We have calculated this quantity numerically on the basis of (53). We 
find that for spin-up, there is a flux into the Ekman layer for 0 6 8 6 8, and a 
return flow to the interior for 8, 6 8 6 go", with 8, 21 66". 

The solution obtained in § 3.1 is based on the approximate equations (44) and 
(45). A more systematic approach is to introduce a formal expansion in powers of 
B-I into the full equations (42) and (43). Equations (44) and (45) then appear as 
the lowest order equations in the sequence generated by the expansion. Although 
the solution given in § 3.1 is adequate for most purposes, the higher-order terms 
are not without interest. Consider, for example, the angular velocity in the equa- 
torial plane for the case of impulsive spin-up. The theory of $3.1 predicts that it is 
zero in the interior ( 5  > 0)  and 0, on the boundary (5  = 0). (A similar discon- 
tinuity occurs in the solutions for a cylinder given by Walin (1969) and Sakurai 
(1969a, b).)  Detailed calculations based on the expansion in powers of B-1 show 

Sl(<,8 = in-, t = 00) = B-l 2 c~m)h;1w~(0)exp(-h,~)+O(B-2). (57) 

Thus the interior angular velocity in the equatorial plane is small (of the order of 
B-1) but not zero. Since 0 = Q, on the boundary at all latitudes, it follows that 
the gradient of the angular velocity becomes large near the equator. 

that m 

n= 1 

4. Remarks on the solar spin-down problem 
Dicke (1964) and Roxburgh (1964) have suggested that the interior of the sun 

may be rotating more rapidly than the surface layers, a hypothesis considerably 
strengthened by the oblateness measurements of Dicke & Goldenberg (1967). 
Howard, Moore & Spiegel (1967) suggested that such a state of differential 
rotation would not persist because of the Ekman spin-down process. The subse- 
quent controversy has produced many qualitative arguments, but no calculation 
of the Ekman process under solar conditions. The essential features of the solar 
problem are spherical geometry, strong stratification, and very small Prandtl 
number. The present work fails with respect to the third condition, since we have 
taken the Prandtl number to be of order one with respect to the Ekman number. 
Nevertheless, it  is still of interest to consider the numbers for the solar case. The 
'container wall' in the case of the sun is the interior interface between the radia- 
tive core and the bottom of the convection zone, so that 2 N 5 x lO5km, the 
radius of the radiative core. For the interior angular velocity, we take the value 
suggested by Dicke (1967a), 6, N 3 x 10-5sec-1. The Brunt-Vaisala frequency 
may be calculated from a solar model, and a typical value in the vicinity of the 
convection zone boundary is 8 N see-l. For these numbers, the 10 yo scale 
(56) is (for "6 8 2.7 104COSekm. 

At  the pole, for example, 8 N 27,000 km, while at 8 = 45", 8 - 19,000 km. These 
results suggest that for slow, continuous spin-down of the solar convection zone, 
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the modification of the internal rotation state is confined to a layer below the 
convection zone - 30,000km thick. However, the very large (radiative) thermal 
diffusivity of the solar material may well alter this conclusion. To get reliable 
information about the Ekman process under solar conditions, it will be necessary 
to develop a spin-down theory for the case of very small Prandtl number .9 (for 
example, 9' = O ( E i ) ) .  

Finally, we note that the present calculations predict a large gradient of 
azimuthal velocity near the equator. If rotational instabilities of the type dis- 
cussed recently by Goldreich & Schubert (1967) are operative, then, in a con- 
tinuous spin-down process, the instabilities should appear first at  the equator. 
(The occurrence of the rotational instability in the sun is still a point of contro- 
versy. Objections have been raised by Clark et al. (1969) and Dicke (196'ib, 1970).) 
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Appendix A. Computation of the eigenfunctions and interior flow 
~ o m ~ u t a ~ i o n  of the eigenfunctions 

Equation (46) has a singular point a t  x = 1. The indicia1 equation has roots g, 
so that the acceptable solution behaves like (1 -x)i; thus, we require that 
(1  -x2) (dw,/dx) be bounded at x = 1. The condition at x = 0 is w,,(O) = 0. By use 
of a standard theorem on singular Sturm-Liouville systems (see for example, 
Weinberger 1965, p. 176)) it is not hard to show that the spectrum is discrete and 
the eigenfunctions are complete. Although equation (46) is the equation for 
oblate spheroidal angle functions, we have not found the results available in the 
literature useful here, because our eigenvalue problem is somewhat different from 
the 'standard ' eigenvalue problem for spheroidal wave functions. A direct 
numerical approach is difficult because of the singularity at  x = 1. The procedure 
used here-an expansion in Legendre functions-is suggested by the form of the 
equation. The functionspg(x), for m = 1, are eigenfunctions of the operator on the 
left-hand side of (46). Since w ,  is an odd function of x, we need pi ,  only for n even. 
Thus, we try 00 

W J X )  = D)")P;j(x), 
j=1 

(1 - x2)h d2j+l 
Pij(.) = -- __- ($2- 1)". 

(2J )  ! 22.1 d X 2 j + l  
where 

Substitution into (46) yields 
rn m 

and it is clear that the coefficients are coupled by the x2 term. An infinite matrix 
equation is obtained by multiplying by Pik and integrating over [0, 11. The result 
is conveniently written as m 

c MkjQj = PC,, (A 4) 
j = 1  



Spin-up of a strongly stratified jluid in a sphere 145 

where p = hi2 and cj = 2j(2j + 1) (4j + l)-m;.")) 

with 31 being the symmetric matrix 

x2Pik Pij dx. M - [(4k + 1)  (4j + 1)]* 

The matrix elements Mkj may be evaluated with the help of recurrence formulas 
for Legendre functions (Abramowitz & Stegun 1964). One finds the selection rule 
Mkj=Ounless j=k- l ,kork+l ,andthevalues  

8k2 + 41%- 3 
M -  

kk - ( 2 k )  (2k + 1) (4k - 1) (4k + 3) 

and M&+l = J&+,k = [(4k+1)(4k+3)2(4k+5)]-*.  

The infinite set of homogeneous equations (A 4) determines eigenvectors 
Cp) and eigenvalues pn. Truncation of the set of equations leads to an algebraic 
eigenvalue problem, which can be solved numerically. We have obtained the 
eigenvalues by the method of bisection, and the eigenvectors by inverse iteration, 
as described in detail by Wilkinson (1965). All calculations were carried out 
double precision, and various accuracy checks indicated a high degree of precision 
for the truncated eigenvalue problem. The effect of truncation was assessed by 
repeating the calculations for different matrix sizes (from 20 x 20 to 100 x 100). 
The final calculations reported here were based on 30 eigenfunctions calculated 
from an 80 x 80 matrix. The amplitudes of the eigenvectors are fixed by the 
normalization condition) which may be written as 

Jol X 2 [ W n ( X ) ] 2  ax = Mkj cp Ci."' = p, c [ C p y  = 1. 
k ,  j k 

In  the computation of the interior angular velocity, we have found it con- 
venient to  use the functions) 

Q,(x) = x( 1 - x2)--3wn(x), 

which can be expressed simply in terms of the ordinary Legendre polynomials: 

(x2- l),. P , ( X )  = __ - 
1 an 

2nn! dxn 

From equations (A l),  (A 2 ) )  (A 5 ) )  and the recurrence formula (Abramowitz & 
Stegun 1964) 

one can show that 

The expression (A 6) is indeterminate for x = 1, and it can be shown that 
m 

Qn(l) = c Dpk(2lc f  1) .  
k= 1 

Equations (A 6) and (A 7) reduce the problem of computing the eigenfunctions to 
the problem of computing Legendre polynomials. We have used these formulas to 

10 F L M  45 
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compute Q,(x) for n = 1,2, . . . , 30. It is perhaps worth noting the following basic 
properties of the eigenfunctions: (i) they vanish a t  x = 0; (ii) they oscillate least 
rapidly near x = 0 and most rapidly near x = 1; (iii) Q,(l) N (7r2/2) (n+ +)% 
as n + co; (iv) away from x = 1, all the eigenfunctions are of order one. 

Computation of the interior flow 
The 30 eigenfunctions available have been used to compute the interior angular 
velocity as a function of 6 (distance from the boundary) and 8 (colatitude). The 
series to be summed is given by (55 ) .  The coefficients A, (equation (54)) are given 

(1 - x2) C & ( X ) ~ X  = (20$")/5). 
by 

These coefficients diminish rather slowly with n ;  for example, 

A,, = - 0.04044629, 

so that the convergence of the series ( 5 5 )  for !2 is amatter for careful consideration. 
Numerical exploration has shown that 30 terms are not sufficient for an accurate 
result when 6 = 0;  the exponential factors are needed for convergence. For 
0 = O", for example, 4-place accuracy is attained for 6 3 0.15 and 3-place accuracy 
for 5 2 0.12. Fortunately, the calculated values for 0.15 6 [ < 0.20 are on a 
straight line; furthermore, this straight line extrapolated pa.sses through the 
point 1.0000 for 6 = 0.0. Thus, linear extrapolation can be used to complete the 
calculation of Q. We estimate that the values calculated in this way are accurate 
to 3 places for 6 < 60". Although tables of Q for 0 = 0" (15") 75" have been con- 
structed, they are not given here since the main features of interest are already 
present in figure 1. 

Asymptotic calculation of eigenfunctions 

When A is large, approximate solutions of (46) can be obtained by the WKB 
method. This requires a matching of an interior solution to  a solution valid near 
the singular point ( x  = 1 )  and another solution valid near the turning point 

Consider first the interior solution. The standard approximation (Morse & 
( x  = 0). 

Feshbach 1953, p. 1092) gives 

w = wz = cz[x2( 1 - X 2 ) I - t  cos [h{l - (1 - X2)*} - 41, 

WI,& czx-+ cos [(Ax2/2) - $1, 

(A 8) 

where cz and 4 are constants. As x -+ 0, 

(A 9) 

and we see that the assumptions behind the WKB method break down for 
x = O(h-Q). This suggests the scaling y = h$x, which gives the following equation 
for w: (dZwldy2) + y2w = O(h-1). 

The solution obtained by ignoring the right-hand side is 

wo = c0yJJ*(y2/2), 
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where J% is a Bessel function and co is a constant. The asymptotic behaviour of 
wo for large y is (Abramowitz & Stegun 1964) 

w ~ ~ z ~  2~,(7i~)-& cos [ ( Y ~ P )  - (3nls)l. (A 10) 

(A 11) 

The matching of wI and wo is accomplished by comparing (A 9) and (A 10) with 
the result 

where k is an integer. 

c0 = Q( - l)k &A&,, Q, = (3n/8) + kn 

Near x = 1,  the solution also breaks down. We have 

wz,~lcz[2(1-x)]-~cos[h{l- (2-2x)4}-$]. (A 12) 

This suggests the scaling s = A2( 1 - x), which yields for w the equation 

d2w 1 dw 2s-1 
ds2 s ds 4s2 
-+--+- w = O(h--2). 

The solution obtained by ignoring the right-hand side is 

w = w1 = c1Jl([2~]*), 

where c1 is a constant and Jl is a Bessel function. The asymptotic behaviour of w1 
for large s is wlsym c1(7r2s/2)-$ cos [(2s)& - (37r/4)]. 

The matching of wz and w1 (equations (A 12) and (A 13)) yields 

(A 13) 

c1 = ( - l ) m  (nh/2)4 CI, Q, = m7r - (3n/4) + A ,  (A 14) 

where m is an integer. Elimination of $ between (A 11) and (A 14) gives an asymp- 
totic formula for the eigenvalues: 

A, = (n+&)n, (A 15) 

where n is a positive integer. This formula is surprisingly accurate. Even for 
I ~ L  = 1, the difference is less than 4 yo, the numerical value being A: = 12.5430 
and the asymptotic value being ( 9 ~ / 8 ) ~  = 12.4912. The percentage error is even 
less for higher eigenvalues. For n = 10, for example, the numerical value is 
A:o = 1012.2446 and the asymptotic value is 

As a further check on the numerical results, we have also compared asymptotic 
and numerical values of the eigenfunctions. The asymptotic formulas for the 
eigenfunctions can be obtained from the formulas above and the fact that 
cI = 4 2 ,  which is established from the normalization condition, 

= ( 8 1 7 ~ / 8 ) ~  = 1011.7887. 

and the approximation (A 8). The results are 

4x2 T 
Q,(x) 2: [---I' cos[h,(l - x 2 ) * -  (3n/4)], (0 < x < l), (A 16) ( 1 4 ) 3  
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and 

In  particular, the values of the eigenfunctions a t  the pole (x = 1) may be calcu- 
lated from equation (A 18): 

Q,(l) N i(rrh3,)B 2: &?(n + +)%. (A 19) 
The agreement between the asymptotic values given by (A 19) and the numerical 
values given by (A 7 )  is exceptionally good. Even for n = 1, the discrepancy is 
less than 1 yo (numerical = 5.9207, asymptotic = 5.8884). For higher n, the 
agreement is even better (for n = 10, numerical = 159.0304, asymptotic = 

158.9873). 
Although we have prepared numerical tables of the functions occurring in the 

present work, they are not included here, since the essential features of the 
solution are already contained in figure 1. Readers interested in more details are 
invited to write to  the authors. 

Appendix B. The neglect of compressibility 
The continuity equation (in dimensional form) may be written as 

(apjat") + ? . $po + p o t .  6 = 0, (B 1)  
and we wish to show that the first two terms are much smaller than the third. 
We do this by a sequence of estimates in which we express the order of magnitude 
of all relevant quantities in terms of any convenient tne, which we choose to be 
the azimuthal velocity a. The basic time scale is f N Qi1E-*(8/i) ,  and the basic 
length scales are 2 (along equipotentials) and 8 (normal to equipotentials). In 
order of magnitude, the scale height is B - 6:/@, and we also have 

By@ N ~ $ 3 0 ~ / 6 p o  N &I. 

2p0i3hO x e6 = $@ +- ~ $ 6 ~ .  

@ N pofi0ia. 

p N po(60i/8@)a. 

We start with the dimensional form of equation (24) : 

From the component of (B 2) along an equipotential, we get 

From this equation and the component normal to equipotentials, one gets 

From the thermodynamic relation (7) and the above equations, it follows that 

since the term @ in (7)  is smaller than by the factor 8jB. The dimensional form 
of the entropy equation (26) is 

The velocity involved in (B 4) is the velocity normal to an equipotential, a,; and 
it follows from (17), (B 3), and (B 4), that 

6, - Eh&. 

The component of velocity along an equipotential is obtained from the azimuthal 

equation (a&/at") = -2Q0e,.6,  

(B 2) 

3 - ( % J P O  Po) (p^/p^o) @p0 /Po  9 0 )  ( f i o m m  (B 3) 

@/at) + 6. = 0. (B 4) 

h 
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from which one can show that 8,, N (Z/b)E:O. 

The estimates of the three terms in the continuity equation can be put into the 
following form : 

and 

Thus, the error caused by neglecting compressibility is of the order of (SIB). 
The approximation also must be justified within the boundary layers; it 

turns out that theneglected terms are actually higher-order in the Ekmannumber. 
The estimates are straightforward, so we do not give them here. 
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(apjat”) EBp^,tqB, 6.$po E:poo/B 
Po $ .6 - E4po a/$. 
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